Misalnya kita ingin melihat puncak pegunungan berapi. Kalau kita naik ke atas, resiko ancaman sangat besar. Untuk sanggup melihat dengan terperinci benda-benda yang letak dan posisinya jauh, kita sanggup memakai alat yang disebut teropong atau teleskop. Secara garis besar, teropong dibagi menjadi 2 macam, yaitu teropong pantul dan teropong bias.
Kelas 11 SMAAlat-Alat OptikTeropongSebuah teropong diarahkan ke bintang, menghasilkan perbesaran anguler 20 kali. Jika jarak fokus objektif 100 cm maka jarak antara lensa objektif dan lensa okuler teropong tersebut adalah .... OptikOptikFisikaRekomendasi video solusi lainnya0059Teropong bintang memiliki jarak fokus lensa objektif 5 m...0336Sebuah teropong bumi yang panjangnya 33,5 cm digunakan ...0244Teropong bintang perbesaran angularnya 10 kali . Jika ja...0231Perhatikan gambar pembentukan bayangan pada teropong beri...Teks videoHai coffee Friends disini kita mempunyai soal sebagai berikut untuk mengerjakan soal tersebut kita menggunakan konsep dari alat optik yaitu pada toko bintang pertama kita. Tuliskan di sini yang diketahui sebuah teropong diarahkan ke bintang menghasilkan perbesaran anguler 20 kali maka perbesaran nya di = 20 kali jika jarak fokus objektif 100 cm, maka jarak antara lensa objektif dan lensa okuler teropong tersebut itu adalah jarak fokus lensa objektif ini = 100 cm kemudian yang ditanyakan adalah D yaitu jarak antara lensa objektif Dan lensa okuler teropong tersebut kemudian kita perhatikan di sini untuk pengamatannya night and Paper akomodasi. Nah kemudian karena benda yang diamati adalah bintang nama untuk sop-sop adalah jarak benda ke lensa objektif = tak hingga digunakan untuk mengamati bintang nah, kemudian dituliskan di sini untuk rumus persamaan umum optik 1 per = 1 per sop kemudian ditambah dengan 1 per X aksen X aksen adalah jarak bayangan lensa objektif karena sop itu = tak hingga √ 1 per x = 1 sehingga kemudi tambah dengan 1 per S aksen akan kita peroleh bahwa nilai dari 1 per S = 1 per S aksen 6 maka untuk x = s aksen kopi nah kemudian kita Tuliskan di sini rumus perbesaran pada teropong bintang dengan pengamatan tanpa berakomodasi nah yaitu m = FX dibagi dengan x adalah jarak benda ke lensa okuler kalau kita masukkan nilainya maka ini 20 = f yaitu 100 kemudian dibagi dengan esok nanti kita cari esok-esok ini = 100 dibagi dengan 20 Lah kita peroleh esok ini = 5 cm, kemudian kita gunakan rumus dalam menghitung debit yaitu jarak antara lensa objektif dan okuler teropong bintang tersebut pada pengamatan tidak berakomodasi D ini = S aksen kemudian ditambah dengan S maka q = 6 karena fob = s n o p + q ditambah dengan esok kalau kita masukkan nilainya maka Deni = 100 kemudian ditambah dengan 53 D = 105 cm. Jadi kita simpulkan bahwa jarak antara lensa objektif dan okuler teropong tersebut adalah yang oxide 105 cm Sampai berjumpa di soal yang selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
1Konsep Dasar Fisika Optik untuk Pembuatan Teropong Bintang Pembias dan Teropong Bintang Pemantul Sehah, S.Si. M.Si. 2 Alih Teknologi Teknik Pembuatan Teropong Bintang Sederhana dengan Menggunakan Bahan Baku Peralon Hitam dan Lensa Cembung Dr. Abdullah Nur Aziz, M.Si. 3 Sosialisasi Teknik Pengamatan Hilal Menggunakan Teropong Bintang Sederhana
Teropong atau teleskop digunakan untuk memperbesar benda yang sangat jauh letaknya. Pada kebanyakan kasus di dalam penggunaan teropong, benda bisa dianggap berada pada jarak tak terhingga. Galileo, walaupun bukan penemu teleskop, ia mengembangkan teleskop menjadi instrumen yang penting dan dapat digunakan. Galileo merupakan orang pertama yang meneliti ruang angkasa dengan teleskop atau teropong. Dengan penelitiannya tersebut, Galileo akhirnya ia membuat penemuan-penemuan yang mengguncangkan dunia, di antaranya satelit-satelit Jupiter, fase Venus, bercak Matahari, struktur permukaan bulan, dan pernyataannya bahwa galaksi Bimasakti terdiri dari sejumlah besar bintang-bintang individu. Secara garis besar, teleskop atau teropong ada dua macam, yaitu teropong bias dan teropong pantul. Lalu, teropong bias ini sendiri di ada 4 jenis yang umum dipakai oleh orang, yaitu teropong bintang astronomi, teropong bumi medan, dan teropong panggung Galileo. Nah, pada kesempatan kali ini kita akan mempelajari pengertian, fungsi, proses pembentukan bayangan, rumus perbesaran dan panjang teropong bumi. Silahkan disimak baik-baik penjelasan berikut. Pengertian dan Fungsi Teropong Bumi Apabila kita melihat benda-benda di Bumi menggunakan teropong bintang maka akan diperoleh bayangan yang terbalik. Hal itu tidak dikehendaki. Untuk mengembalikan atau membalik bayangan, maka kita harus menempatkan sebuah lensa positif di antara lensa objektif dan lensa okuler. Lensa ini disebut lensa pembalik. Susunan lensa tadi akan menghasilkan teropong bumi. Teropong Bumi atau teropong medan adalah teropong yang digunakan untuk mengamati benda-benda yang jauh di permukaan bumi. Adapula yang menyebut teropong Bumi sebagai teropong yohana. Teropong jenis ini biasa digunakan oleh orang-orang di laut, seperti nahkoda kapal, angkatan laut, bahkan para bajak laut zaman dahulu dan mungkin zaman sekarang juga. Selain digunakan di lautan, teropong Bumi juga dapat digunakan di wilayah daratan. Misalkan para tentara menggunakan teropong ini untuk memantau keadaan di perbukitan. Bentuk teropong Bumi dapat kalian lihat pada gambar di bawah ini. Pembentukan Bayangan dan Rumus Teropong Bumi Seperti yang telah dijelaskan sebelumnya, teropong Bumi menggunakan tiga buah lensa positif sekaligus. Ketiga lensa tersebut berfungsi sebagai lensa objektif, lensa okuler dan lensa pembalik. Lensa pembalik berfungsi untuk membalik bayangan akhir yang dibentuk lensa okuler, sehingga dihasilkan bayangan yang sama tegak dengan benda aslinya. Lensa pembalik diletakkan di antara lensa objektif dan lensa okuler. Skema atau diagram pembentukan bayangan pada teropong atau teleskop Bumi dapat kalian lihat pada gambar di bawah ini. Coba kalian simak baik-baik dan pelajari gambar tersebut. Ciri khas dari teropong Bumi adalah jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler fob > fok. Di antara lensa objektif dan lensa okuler diletakkan lensa pembalik. Karena teropong Bumi digunakan untuk melihat benda-benda yang jauh, sehingga bayangan terbentuk di titik fokus lensa objektif. Agar bayangan menjadi tegak, maka teropong Bumi dilengkapi dengan lensa pembalik. Seperti halnya mikroskop dan teropong bintang, perbesaran pada teropong bumi juga dibedakan untuk mata berakomodasi maksimum dan mata tidak berakomodasi. Berikut ini penjelasannya. 1. Rumus Teropong Bumi untuk Mata Berakomodasi Maksimum Untuk perbesaran anguler pada teropong Bumi, dicari dengan persamaan berikut. Dan panjang teropong Bumi untuk pengamatan dengan mata berakomodasi maksimum dapat dicari dengan persamaan berikut. Keterangan M = perbesaran anguler fob = jarak fokus lensa objektif sok = jarak benda pada lensa okuler fp = jarak fokus lensa pembalik d = panjang teropong 2. Rumus Teropong Bumi untuk Mata Tidak Berakomodasi Untuk pengamatan dengan mata tidak berakomodasi, bayangan yang dibentuk oleh lensa objektif berada tepat di titik fokus lensa okuler. Ini berarti jarak benda lensa okuler sama dengan jarak fokusnya. Jadi, perbesaran untuk mata tidak berakomodasi adalah sebagai berut. Sementara panjang teropong untuk mata tidak berakomodasi dihitung dengan menggunakan persamaan berikut. Keterangan M = perbesaran anguler fob = jarak fokus lensa objektif fok = jarak fokus lensa okuler fp = jarak fokus lensa pembalik d = panjang teropong Contoh Soal dan Pembahasan Agar kalian lebih paham mengenai penerapan rumus-rumus perbesaran dan panjang teropong bumi di atas, silahkan kalian simak baik-baik beberapa contoh soal dan pembahasannya berikut ini. 1. Teropong bumi dengan jarak fokus lensa objektif 40 cm, jarak fokus lensa pembalik 5 cm, dan jarak fokus lensa okulernya 10 cm. Supaya mata melihat bayangan tanpa akomodasi, berapakah jarak antara lensa objektif dan lensa okuler teropong tersebut? Penyelesaian Diketahui fob = 40 cm fp = 5 cm fok = 10 cm Ditanyakan d untuk mata tanpa akomodasi Jawab Jarak antara lensa objektif dan lensa okuler merupakan panjang teropong. Panjang teropong bumi untuk pengamatan dengan mata tanpa akomodasi dapat dihitung dengan menggunakan rumus berikut. d = fob + 4fp + fok ⇒ d = 40 cm + 45 cm + 10 cm ⇒ d = 40 cm + 20 cm + 10 cm = 70 cm Jadi, jarak lensa objektif dan lensa okuler teropong tersebut adalah 70 cm. 2. Sebuah teropong Bumi dengan jarak fokus lensa objektif, pembalik dan okuler berturut-turut 80 cm, 5 cm dan 20 cm. Teropong ini digunakan untuk melihat benda jauh oleh orang bermata normal dengan berakomodasi maksimum. Tentukanlah perbesaran sudut dan panjang tubusnya. Penyelesaian Diketahui fob = 80 cm fp = 5 cm fok = 20 cm s’ok = titik dekat mata normal = -25 cm Ditanyakan M dan d Jawab Karena mata berakomodasi maksimum, maka perbesaran sudut teropong Bumi dapat kita cari menggunakan persamaan berikut. Oleh karena jarak benda pada lensa okuler sok belum diketahui, maka kita tentukan dahulu menggunakan persamaan yang berlaku pada lensa yaitu sebagai berikut. Dengan demikian, perbesaran sudutnya adalah Dan panjang tubus teropong dapat kita tentukan dengan menggunakan persamaan berikut. d = fob + 4fp + sok ⇒ d = 80 cm + 45 cm + 11,1 cm ⇒ d = 80 cm + 20 cm + 11,1 cm = 111,1 cm Jadi, perbesaran sudut dan panjang teropong Bumi tersebut adalah 7,2 kali dan 111,1 cm.
Perbesarananguler lup itu adalahanswer choices . 4 kali. 4,5 kali. 5 kali. 6 kali. 2 kali Sebuah teropong bintang memiliki jarak fokus lensa objektif dan okuler masing-masing 100 cm dan 8 cm. Ternyata bayangan bintang yang diamati pengamat tepat jatuh di titik fokus okuler. Kemudian lensa okuler digeser hingga mata pengamat
Lalu teropong bias ini sendiri di ada 4 jenis yang umum dipakai oleh orang, yaitu teropong bintang (astronomi), teropong bumi (medan), dan teropong panggung (Galileo). Nah, pada kesempatan kali ini kita akan mempelajari pengertian, fungsi, proses pembentukan bayangan, rumus perbesaran dan panjang teropong bumi.
Sebuahteropong dipakai untuk melihat bintang yang menghasilkan perbesaran anguler 6 kali. Jarak lensa obyektif terhadap lensa okuler 35 cm. Teropong digunakan dengan mata tidak berakomodasi. dan perbesaran anguler teropong M adalah . answer choices . L = 225 cm, M = 8 kali. L = 225 cm, M = 7 kali. L = 200 cm, M = 8 kali. L = 200 cm, M
Jaraktitik api lensa objektif dan okuler dari teropong bintang berturut-turut adalah 150 cm dan 30 cm. Bila teropong bintang dipakai oleh mata normal tidak berakomodasi, maka panjang teropong adalah . 30 cm; 120 cm; 150 cm; 180 cm; 210 cm; Jawaban: Sebuah teropong dipakai untuk melihat bintang yang menghasilkan perbesaran 6 kali.
Apabilakekuatan lensa 10 dioptri, maka jarak benda terhadap lensa adalah . 5 cm; 10 cm; 15 cm; 20 cm; Seorang teropong diarahkan ke bintang, mengÂhasilkan perbesaran anguler 25 kali. Jika jarak fokus objektif 150 cm, maka jarak antara lensa objektif dan lensa okuler teropong tersebut adalah cm. 175; 156; 150; 144; 120; Jawaban: B
. 3evp2ibqdu.pages.dev/3513evp2ibqdu.pages.dev/1713evp2ibqdu.pages.dev/3143evp2ibqdu.pages.dev/153evp2ibqdu.pages.dev/753evp2ibqdu.pages.dev/663evp2ibqdu.pages.dev/3133evp2ibqdu.pages.dev/513evp2ibqdu.pages.dev/354
perbesaran anguler teropong bintang apabila